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ABSTRACT: Surface soil moisture serves as a vital factor affecting soil evaporation, transpiration, hydrology, 

ecology, and agriculture; so accurate quantification of soil moisture is crucial. However, achieving high 

temporal resolution in monitoring and interpreting soil moisture patterns is challenging, especially in 

developing nations like Iran. To bridge the data gap, remote sensing techniques offer continuous soil moisture 

monitoring at moderate temporal resolution and lower cost. Multiple operational microwave satellites 

contribute to global surface soil moisture mapping, with Soil Moisture Active Passive (SMAP) recognized for its 

accuracy. This study employs SMAP satellite data to analyze the temporal and spatial dynamics of soil moisture 

in Khorasan Razavi province, located in Iran, providing insights into 2015-2022 trends. Findings reveal monthly 

average soil moisture ranging from 0.0712 m³m⁻³ in August to 0.1625 m³m⁻³ in March, with an annual average 

of 0.1150 m³m⁻³, lower than the country's annual average. Seasonal volumetric water content ranges from 

0.1343 m³m⁻³ in summer to 0.0751 m³m⁻³ in winter. Variations are attributed to diverse climates, topography, 

and land use affecting precipitation and soil moisture. The paper also concludes that while results aid water 

and soil management in Khorasan Razavi, comprehensive soil moisture studies should encompass all Iranian 

provinces. Furthermore, recent soil moisture monitoring techniques can also be used to capture high spatial 

resolution soil moisture datasets.  
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1. Introduction 

Surface soil moisture is a crucial environmental factor affecting soil evaporation and transpiration [1] and is 

also linked to the risk of wildfire [2,3]. This variable also plays a vital role in hydrology by influencing rainfall-

runoff processes, in ecology as it regulates net ecosystem exchange, and in agriculture, as it stands as a 

limiting factor for food security [4]. Therefore, accurate quantification of soil moisture is critical [5]. However, 

monitoring and interpreting soil moisture patterns at a high temporal resolution is challenging due to the 

expenses associated with setting up, operating, and maintaining a dense soil moisture network across a region. 

This challenge becomes particularly pronounced in developing nations, where financial constraints make this 

endeavor unfeasible due to resource competition [6,7]. 
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As a developing country, Iran lacks a national soil moisture network. The current measurements are confined 

to Agricultural meteorological stations, distributed unevenly nationwide. This unequal distribution has led to 

certain provinces facing an absence of monitoring stations or being equipped with an inadequate number to 

effectively capture soil moisture dynamics. Furthermore, the available soil moisture data from these stations is 

often limited in duration, with few offering continuous time series data [8]. A prime illustration of this data gap 

is Khorasan Razavi province, located in the east of Iran, where approximately 70 percent of the region 

experiences arid and semi-arid climates [9] highlights the significance of consistent soil moisture monitoring 

[7].  The significance is heightened when considering that this province is home to Iran's second-largest city 

and a considerable population [10]. As a result, food security is gaining more prominence [11], underscoring 

the essential need for this data.  

To address the deficiency of in-situ data, remote sensing techniques offer a valuable opportunity for 

continuous soil moisture monitoring, providing estimates at moderate temporal resolution and lower cost [6]. 

Recent progress in earth observation technology has turned remote sensing into a big data technology, 

capable of applying various data-driven approaches, comparing their efficiency, and swiftly mapping and 

monitoring the data in dynamics areas, which is the object of the current research [12].  

Currently, multiple microwave satellites are operational for global surface soil moisture mapping, with the Soil 

Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites standing out for their 

accuracy [13]. SMAP has been utilized in monitoring soil moisture in Iran in various studies, with results 

consistently highlighting robust correlations between remotely sensed data and in-situ observations [14, 15, 

16]. However, less research has focused specifically on the Khorasan Razavi province.  

Only one research covers this geographical scope, focusing on the temporal and spatial dynamics of soil 

moisture across the country [8]. However, the applicability of these findings to the current study area is 

debatable. This uncertainty arises due to the diverse climatic conditions, spanning from very humid to hyper-

arid, characterized by considerable spatial variations in precipitation and temperature [17], the diversity of 

topography conditions (plain to mountainous areas, and the diversity of landcover types (built-up, bare land, 

grassland, waterbody, etc.) [18]. Given this diversity which affects soil moisture across various regions [19, 20, 

21], while the previous research's findings provide valuable insights on a national scale, they might not 

accurately represent conditions at a more localized level. 

 To fill this gap, this research aims to explore the spatial and temporal dynamics of soil moisture within 

Khorasan Razavi province using SMAP to provide a good understanding of the changes in soil moisture within 

this region from 2015 to 2022.  

 

2. Study Area 

Khorasan Razavi province is situated in northeastern Iran and spans around 7% of the country`s total area [22]. 

Its geographical coordinates are between the longitude 56° 19 ˊ to 61° 16 ˊ E and the latitude 33 52 ˊ to 37° 42 ˊ 

N. The province shares borders with two countries, Turkmenistan, and Afghanistan, to the northeast and east. 

In contrast, it borders South Khorasan, North Khorasan, and Semnan provinces to the south, north, and west, 

respectively [23]. 

As the second most populated province in the nation, it accommodates an approximate population of 6 

million, including the city of Mashhad, the country's second-largest city with around 3 million inhabitants [24]. 

Sharing the impact of climate change with the rest of Iran [25], Khorasan Razavi experiences a prevailing arid 

and semi-arid climate. This is characterized by an average annual temperature of 17 °C and an average annual 

rainfall ranging from 75 mm in the southern regions to 390 mm in the northern zones. The northern part of the 

province is characterized by mountainous ranges interspersed with fertile plains due to favorable rainfall and 

accessible groundwater resources. In contrast, the southern region is predominantly arid due to limited 

rainfall, and its proximity to the arid areas of southeast Iran, leading to a sparse vegetation cover and limited 

agricultural land [24]. 
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Figure1. Location of the Study Area.  

 

3. Materials and Methods 

The Soil Moisture Active Passive (SMAP) mission is one of the initial earth observation satellites developed by 

NASA [26]. Launched in January 2015, this satellite was designed to offer global mapping of soil moisture and 

freeze-thaw state every two to three days, employing an L-band radar operating in an active mode, along with 

an L-band radiometer operating in a passive mode. Following an irreversible hardware failure of the radar on 

July 7, 2015, the radiometer-only soil moisture product remained the sole operational soil moisture product 

for SMAP [27]. This product has a grid size of 9-km and a nominal spatial resolution of 33 km [28]. 

This study utilized the SMAP Level-4 (L4) Soil Moisture product. This product offers surface soil moisture data 

for the top 5 cm of the soil and includes a series of 3-hourly time-averaged geophysical data fields from the 

assimilation system [29].  This dataset can be accessed through Google Earth Engine (GEE) catalogue web page 

(https://developers.google.com/earth-engine/datasets/). GEE is an online computational platform capable of 

processing satellite images, and spatial and geographical data at a petabyte scale. This web-based system 

facilitates high-speed access to satellite data, cloud computing, and big data processing algorithms, effectively 

overcoming limitations related to downscaling, data storage, and processing that can be encountered with 

other techniques. Consequently, many researchers have turned to GEE for their recent studies [12], including 

this research.  

The study period is from 2015 to 2022. Despite its limited duration for climate studies, the research outcomes 

will be reliable due to the demonstration of low and high thresholds over extended periods, attributed to the 

presence of intense pluvial conditions from 2018 to 2019 and severe drought throughout 2020 to 2021 [8]. 

Over eight years, thousands of images encompassed the study area. Initially, these images were aggregated 

into monthly composites for each year. Subsequently, they were spatially averaged over the study area and 

temporally averaged over the study period.  This process yielded 12 maps, each representing the monthly 

average soil moisture for the study area during the research period. 

Monthly minimum and maximum maps were generated, extracting the lowest and highest soil moisture values 

for each month throughout the time frame. This operation resulted in 12 maps for minimum values and 12 for 

maximum values, one for each month. Moreover, the seasonal and annual average soil moisture values for the 

entire study area were calculated over the 8-year study period. These comprehensive analyses were executed 

using the GEE platform. Furthermore, the study also includes a plot depicting the average daily changes in soil 

moisture for each year. 

 

4. Results 

4.1. Average monthly soil moisture 

Fig 2 displays the spatial and temporal distribution of average monthly soil moisture, captured by SMAP 

satellite images from 2015 to 2022. The findings illustrate that the lowest average monthly soil moisture levels 

appeared in July, August, and September, with values of 0.0753, 0.0712, and 0.0739, respectively. Conversely, 
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March and April show the highest average monthly soil moisture values, reaching 0.1625 and 0.1556, 

respectively. 

 
Figure 2. The spatial and temporal distribution of average monthly soil moisture at 5-cm depth, captured by 

SMAP over 2015-2022. 

 

The analysis of the spatial distribution of soil moisture in the province indicates that over these years, the 

plains of Mashhad, Neyshabour and Joveyn in the northern region have consistently exhibited the highest soil 

moisture values. Conversely, the southern areas of the province display the lowest soil moisture values. 

Presented in Table 1 are the average, minimum and maximum monthly values observed over the study period. 

The average monthly values range between 0.0712 in August, representing the minimum, and 0.1625 in 

March, indicating the maximum soil moisture value. Additionally, the minimum monthly soil moisture values 

fluctuate between 0.0019 and 0.0086. Meanwhile, the maximum monthly values vary from 0.3030 to 0.5045. 
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Table 1. Average, minimum and maximum monthly soil moisture values at 5-cm depth, captured by SMAP over 

2015-2022. 

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

MIN 0.0027 0.0025 0.0024 0.0023 0.0020 0.0019 0.0022 0.0039 0.0053 0.0086 0.0048 0.0029 

MEAN 0.1391 0.1463 0.1625 0.1556 0.1352 0.0943 0.0783 0.0712 0.0739 0.0849 0.1186 0.1206 

MAX 0.4063 0.4271 0.4728 0.5045 0.4333 0.4172 0.3077 0.3030 0.3583 0.3748 0.4527 0.4545 

 

Fig 3 illustrates the spatial and temporal distribution of minimum monthly soil moisture. Notably, the lowest 

value is evident in June, with a value of 0.0019. Conversely, the highest values are observed in October, 

marked as 0.0086. Furthermore, Fig 4 depicts maximum monthly soil moisture's spatial and temporal 

distribution. In this representation, the lowest value occurs in August and July, while the highest values are 

observed in April. These trends align with the average monthly soil moisture pattern illustrated in Fig 2. 

 
Figure 3. The spatial and temporal distribution of minimum monthly soil moisture at 5-cm depth, captured by 

SMAP over 2015-2022. 
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Figure 4. The spatial and temporal distribution of maximum monthly soil moisture at 5-cm depth, captured by 

SMAP over 2015-2022 

 

Fig 5 presents the time series of monthly minimum, average, and maximum volumetric water content at a 5-

cm depth, as measured by SMAP. The findings indicate a decrease in values from March and April, followed by 

an increase as the rainy season commences, in September. It's worth noting that the trends in both maximum 

and average monthly values display a similar pattern. However, the minimum monthly values show 

comparatively less fluctuation. 
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Figure 5. The time series of monthly minimum, average, and maximum volumetric water content at a 5-cm 

depth, captured by SMAP over 2015-2022. 

 

Fig 6 displays the daily time series of volumetric water content at a 5-cm depth soil for each year spanning 

from 2015 to 2022. The data illustrates that the peak values were recorded in 2019 at the start of the year, 

whereas the lowest values were observed in 2021. In the middle phase of this period, minimal fluctuations are 

noted, with values consistently within a similar range. Towards the end of the timeframe, 2015 and 2018 show 

the highest volumetric water content, while 2017 and 2022 indicate the lowest values. Moreover, the most 

significant shifts in soil moisture values throughout the study duration are evident during the spring and 

summer seasons, while the autumn and winter periods display comparatively minor changes over these years.  

 
Figure 6. The daily time series of volumetric water content at 5-cm depth, captured by SMAP, in 2015-2022. 

 

In 2016 and 2017, there was an initial rise followed by a decline in soil moisture levels from the beginning to 

the end of the period, relative to the year 2015. In 2018, this pattern reversed, with a decline in soil moisture 

during the initial months of the year, followed by an increase by the end of the year. For 2019 and 2020, soil 

moisture displayed a similar trend of ascending at the beginning and descending by the end of each year. The 

year 2021 marked a distinct deviation, as it showed a continuous reduction in soil moisture throughout the 

entire period compared to the previous years. In 2022, although there was an increase in soil moisture values 

compared to 2021, it remained notably lower compared to other years.  
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4.2. Average Seasonal and Annual Soil Moisture 

Table 2 presents the average volumetric water content for each season and the overall annual mean. 

According to this data, the average soil moisture in spring, summer, autumn, and winter are 0.1343, 0.0751, 

0.1100, and 0.1300, respectively. This data highlights the maximum and minimum soil moisture levels aligning 

with the spring and summer seasons, respectively. Moreover, during spring, the peak values are observed in 

2019 and 2020, while the lowest value occurs in 2021 and 2022. In the summer, the highest value corresponds 

to 2019 and 2020, while 2017 is the lowest. Furthermore, the annual averages range from 0.3149 in 2015 to 

0.5471 in 2019, resulting in an overall average of 0.4494. 

Table 2. Average seasonal and annual soil moisture values at 5-cm depth, captured by SMAP over 2015-2022. 

Years Winter Spring Summer Autumn Annual 

2015 0.0000 0.1206 0.0712 0.1231 0.3149 

2016 0.1383 0.1542 0.0775 0.0951 0.4650 

2017 0.1588 0.1188 0.0696 0.0859 0.4331 

2018 0.1264 0.1406 0.0768 0.1318 0.4755 

2019 0.1869 0.1644 0.0781 0.1177 0.5471 

2020 0.1684 0.1641 0.0798 0.1205 0.5328 

2021 0.1208 0.1026 0.0733 0.0985 0.3952 

2022 0.1403 0.1093 0.0744 0.1076 0.4317 

mean 0.1300 0.1343 0.0751 0.1100 0.4494 

 

5. Conclusions 

The lack of comprehensive soil moisture data in most regions of the country has consistently posed a 

significant challenge for hydrological modeling, weather forecasting, and water resource planning. This 

challenge stems from the limited number of soil moisture measurement stations and their uneven distribution, 

resulting in statistical gaps within the dataset. To tackle this issue, satellite imagery is a valuable tool to 

capture and provide soil moisture data [8]. So, this research aims to show the spatial and temporal pattern of 

soil moisture in Khorasan Razavi province, located in northeast Iran, using SMAP satellite data from 2015 to 

2022. 

The results show that over the study period, 2015 and 2021 were the driest years, while 2019 and 2020 

experienced the highest volumetric water content. These results align with the overall pattern observed in the 

country [8]. However, the result revealed that the monthly average soil moisture values of the region range 

from 0.0712 in August to 0.1625 in March, with an annual average of 0.1150 m3m-3; while the monthly average 

soil moisture value in the country ranges from 0.0005 to 0.538, with an average annual value of 0.137 m3m-3, 

being higher that of in Khorasan Razavi [8]. Additionally, the comparison of the seasonal volumetric water 

content in Iran and Khorasan Razavi province shows that while in Iran, the seasonal values range between 

0.082 m3m-3 in summer and 0.188 m3m-3 in winter [8], in this province, both the highest and the lowest value 

of the range are lower than the country's average, with the value of 0.1343 m3m-3 in spring and 0.0751 m3m-3 

in summer, respectively.  

This result can be attributed to several factors, one of which is precipitation. While precipitation directly 

impacts soil moisture by increasing its content, soil moisture also reciprocally affects precipitation by supplying 

water through evaporation. This interaction has led researchers to investigate soil moisture-precipitation 

feedback in recent decades [19].  Additionally, it is proved precipitation itself is under the effect of topography 

and climate conditions, and this is the reason why these factors are used in a Generalized Regression neural 

network model for the accuracy improvement of precipitation products [18].   

Another contributing factor is land cover and topography. A study has deduced how land use and the 

topographic aspect of a region can impact the fractal dimension of soil particle size distribution and soil 

erodibility factors [20]. Additionally, the soil texture itself plays a role in soil moisture [21,30], because the size 

of soil particles dictates the amount of space between them, thereby influencing water movement through the 
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soil and its capacity to retain water [31]. So, given Iran's diverse topography, climate conditions and landcover, 

it is reasonable to anticipate varying levels of precipitation across different regions of the country [18], leading 

to a wide range of volumetric water content.   

So, while this research offers valuable insights for water and soil management in Khorasan Razavi, it is 

recommended that future studies consider conducting soil moisture data for other provinces of Iran, each 

characterized by distinct climatic conditions and topography. Additionally, given the relatively coarse spatial 

resolution of the SMAP satellite, it is also advisable to explore the utilization of alternative remote sensing 

techniques to map soil moisture at a higher spatial resolution.  
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